Stochastic Memristive Devices for Computing and Neuromorphic Applications

نویسندگان

  • Siddharth Gaba
  • Patrick Sheridan
  • Jiantao Zhou
  • Shinhyun Choi
  • Wei D. Lu
چکیده

Nanoscale resistive switching devices (memristive devices or memristors) have been studied for a number of applications ranging from non-volatile memory, logic to neuromorphic systems. However a major challenge is to address the potentially large variations in space and time in these nanoscale devices. Here we show that in metal-filament based memristive devices the switching can be fully stochastic. While individual switching events are random, the distribution and probability of switching can be well predicted and controlled. Rather than trying to force high switching probabilities using excess voltage or time, the inherent stochastic nature of resistive switching allows these binary devices to be used as building blocks for novel error-tolerant computing schemes such as stochastic computing and provides the needed "analog" feature for neuromorphic applications. To verify such potential, we demonstrated memristor-based stochastic bitstreams in both time and space domains, and show that an array of binary memristors can act as a multi-level "analog" device for neuromorphic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A differential memristive synapse circuit for on-line learning in neuromorphic computing systems

Spike-based learningwithmemristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses frompreand post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore,most of these circuits do not decouple the currentsflowing through memristive device...

متن کامل

A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems

Resistive (or memristive) switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses) with low operation power. This work presents a new artificial synapse scheme, cons...

متن کامل

Neuromorphic computing with multi-memristive synapses

Brain-inspired neuromorphic computing has recently emerged as a promising avenue towards building the next generation of intelligent computing systems. It has been proposed that memristive devices, which exhibit history-dependent conductivity modulation, could be used to efficiently represent the strength of synaptic connections between the neuronal nodes in neural networks. However, precise mo...

متن کامل

Energy-Efficient CMOS Memristive Synapses for Mixed-Signal Neuromorphic System-on-a-Chip

Emerging non-volatile memory (NVM), or memristive, devices promise energy-efficient realization of deep learning, when efficiently integrated with mixed-signal integrated circuits on a CMOS substrate. Even though several algorithmic challenges need to be addressed to turn the vision of memristive Neuromorphic Systems-on-a-Chip (NeuSoCs) into reality, issues at the device and circuit interface n...

متن کامل

Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition

The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al2O3/Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 13  شماره 

صفحات  -

تاریخ انتشار 2013